Pulsed DC- Plasma Assisted Chemical Vapor Deposition of α-rich Nanostructured Tantalum Film: Synthesis and Characterization
Authors
Abstract:
This paper is an attempt to synthesize nanostructured tantalum films on medical grade AISI 316L stainless steel (SS) using pulsed DC plasma assisted chemical vapor deposition (PACVD). The impact of duty cycle (17-33%) and total pressure (3-10 torr) were studied using field emission scanning electron microscopy (FESEM), grazing incidence x-ray diffraction (GIXRD), nuclear reaction analysis (NRA), proton induced x-ray emission (PIXE) and Rockwell indentation methods. The optimized deposition conditions for making the best film characteristics in terms of deposition rate, purity and maximum α-phase was recognized. Also, the results showed that using a near stoichiometric TaN interlayer in this technique improves the film adhesion strength and considerably increases Ta film purity. The NRA analysis results indicated that the pulsed DC-PACVD is capable of producing Ta films with negligible amount of residual hydrogen which makes films needless to post bake treatment.
similar resources
MD-Simulation of Duty Cycle and TaN Interlayer Effects on the Surface Properties of Ta Coatings Deposited by Pulsed-DC Plasma Assisted Chemical Vapor Deposition
In this work, molecular dynamics (MD) simulations were employed to investigate the effects of duty cycle changes and utilization of tantalum nitride interlayer on the surface roughness and adhesion of Ta coating deposited by pulsed-DC plasma assisted chemical vapor deposition. To examine the simulation results, some selected deposition conditions were experimentally implemented and characterize...
full textComparison of Properties of Ti/TiN/TiCN/TiAlN Film Deposited by Cathodic Arc Physical Vapor and Plasma-assisted Chemical Vapor Deposition on Custom 450 Steel Substrates
This study investigated the effects of deposition techniques on the microstructural and tribological properties of Ti/TiN/TiCN/TiAlN multilayer coatings onto a Custom 450 steel substrate. The coatings were produced using cathodic arc physical vapor deposition (CAPVD) and plasma-assisted chemical vapor deposition (PACVD). The microstructural of the coatings was evaluated using (SEM), and phase f...
full textInfluence of pulse power amplitude on plasma properties and film deposition in high power pulsed plasma enhanced chemical vapor deposition
full text
Effect of Temperature and Gas Flux on the Mechanical Behavior of TiC Coating by Pulsed DC Plasma Enhanced Chemical Vapor Deposition(TECHNICAL NOTE)
There are many factors such as voltages, duty cycle, pressure, temperatures and gas flux in coatings process that were effective in changing coatings characteristic. In this paper in plasma enhanced chemical vapor deposition (PECVD) technique, temperature and gas flux are two important variants that affecting the coatings structure and mechanical properties. All TiC coating deposited on a hot...
full textMicrowave Plasma Assisted Chemical Vapor Deposition of Diamond
Diamond crystal S and p01 ycrystal l i ne diamond fi lms have been depos i e y t h e microwave plasma ass i s t ed C V D method from C H / H mixtures. The i n: :oncentration of methane, the pressure, the temperatu$e, 'the to ta l flow ra t e and the microwave power were varied in large ranges. The morphology of the deposits were s tudied by op t i ca l and scanning e l ec t ron microscopy and t...
full textGallium assisted plasma enhanced chemical vapor deposition of silicon nanowires.
Silicon nanowires have been grown with gallium as catalyst by plasma enhanced chemical vapor deposition. The morphology and crystalline structure has been studied by electron microscopy and Raman spectroscopy as a function of growth temperature and catalyst thickness. We observe that the crystalline quality of the wires increases with the temperature at which they have been synthesized. The cry...
full textMy Resources
Journal title
volume 30 issue 4
pages 551- 557
publication date 2017-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023